
SPHERICAL HARMONICS AND DISCONTINUOUS GALERKIN
FINITE ELEMENT METHODS FOR THE THREE DIMENSIONAL

NEUTRON TRANSPORT EQUATION: APPLICATION TO CORE AND
LATTICE CALCULATION

PUBLISHED IN NUCLEAR SCIENCE AND ENGINEERING (2023) DOI:10.1080/00295639.2022.2154546.

Kenneth Assogba
Université Paris-Saclay, CEA, Service d’Études
des Réacteurs et de Mathématiques Appliquées

91191 Gif-sur-Yvette, France
&

CMAP, École Polytechnique
Institut Polytechnique de Paris

91128 Palaiseau, France
kenneth.assogba@cea.fr

Lahbib Bourhrara
Université Paris-Saclay, CEA, Service d’Études
des Réacteurs et de Mathématiques Appliquées

91191 Gif-sur-Yvette, France
lahbib.bourhrara@cea.fr

Igor Zmijarevic
Université Paris-Saclay, CEA, Service d’Études
des Réacteurs et de Mathématiques Appliquées

91191 Gif-sur-Yvette, France
igor.zmijarevic@cea.fr

Grégoire Allaire
CMAP, École Polytechnique

Institut Polytechnique de Paris
91128 Palaiseau, France

gregoire.allaire@polytechnique.fr

Antonio Galia
Université Paris-Saclay, CEA, Service d’Études
des Réacteurs et de Mathématiques Appliquées

91191 Gif-sur-Yvette, France
antonio.galia@cea.fr

ABSTRACT

The spherical harmonics or PN method is intended to approximate the neutron angular flux by a linear
combination of spherical harmonics of degree at most N . In this work, the PN method is combined
with discontinuous Galerkin finite elements method and yield to a full discretization of the multigroup
neutron transport equation. The employed method is able to handle all geometries describing the fuel
elements without any simplification nor homogenisation. Moreover the use of matrix assembly-free
method avoids building large sparse matrices, which enables to produce high-order solutions in small
computational time and less storage usage. The resulting transport solver called NYMO has a wide
range of applications: it can be used for a core calculation as well as for a precise 281-groups lattice
calculation accounting anisotropic scattering. To assess the accuracy of this numerical scheme, it
was applied to 3D reactor core and fuel assembly calculations. These calculations point out that the
proposed PN-DG method is capable of producing precise solutions while the developed solver is able
to handle complex 3D core and assemblies geometries.

Keywords Discontinuous Galerkin FEM · Spherical Harmonics Method · Neutron Transport Equation · Unstructured
and non-conforming meshes
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1 Introduction

Deterministic solutions of Boltzmann transport equation on unstructured and non-conforming meshes are in high
demand in the industry for the past few years due to the rapid development of advanced nuclear reactor concepts
and high-performance computing clusters. In this work we combine spherical harmonics and discontinuous Galerkin
methods to obtain a complete discretization of the multigroup neutron transport problem [1] defined on the phase space
X = D × S2 ∋ (x, ω). The unit sphere S2 is the angular domain and the reactor domain D is a bounded set of Rd

where d = 1, 2 or 3. We are particularly interested in the study of three-dimensional configurations.

The PN method [2] consists in approximating the angular neutron flux u(x, ω) by the truncated series over ymn (ω) the
real spherical harmonics [3, Appendix A]

u(x, ω) ≈
N∑

n=0

n∑
m=−n

um
n (x)ymn (ω). (1)

The well established discrete ordinates or SN method [4] is known to suffer from nonphysical oscillations, also referred
as ray effects [5]: in a medium with little or no scattering a source is propagated preferentially along the ordinate
directions, leading to artificially non-monotoneous flux behavior. Since the angular flux is approximated for all direction,
PN method is immune to ray effects. However in the past, PN discretization had the reputation of being difficult to
implement and memory intensive in two and three dimension. To overcome these challenges, the PN community has
been continuously improving its methods and codes, leading to advanced transport solvers. One can cite the EVENT
code [6], the Argonne National Laboratory nodal transport solver VARIANT [7] and the domain decomposition based
solver PARAFISH [8]. However, these solvers are limited to meshes with straight edges and faces. The ability for a
spatial approximation to handle curved shaped elements allows for an exact representation of the annular sectors, typical
of a fuel pellet.

In this work, the remain spatial unknown, called angular flux moments um
n (x) from (1) are approximated using

discontinuous Galerkin (DG) finite element method. Introduced by Reed and Hill [9] in the early 70s, DG method is
well suited for hyperbolic problems. In addition DG provide the flexibility to handle non-conforming and unstructured
meshes and the small stencil renders the DG methods extremely parallelizable. One can argue to finish that DG achieve
with ease high-order accuracy. Assuming the flux moment um

n (x) polynomial of degree at most k leads to a k+ 1
2 order

of convergence [10].

Based on the variational formulation proposed in [11], a new approximation method for the Boltzmann transport
equation is presented in [12]. The resulting solver called NYMO has been implemented in the frame of CEA reactor
physics platform APOLLO3 ® [13]. The proposed numerical method can treat 2D unstructured and non-conforming
meshes with line segments, circles and circular arcs [14]. Hence heterogeneous pin-cell geometries with concentric
annular regions can be modeled without any approximation. We use matrix assembly-free technique to leverage the
common concern about memory usage, thus high-order approximation can be considered. The code is written in C++
and compute-intensive tasks like matrix-vector product operators are parallelized using OpenMP.

First results for 3D reactor core k-eigenvalue calculation have been shown in [15]. The purpose of this paper is to
present extension of the NYMO capabilities to 3D prismatic meshes, Figure 1. The novelty here is the versatile use of this
solver to efficiently perform 3D reactor core and fuel assemblies calculations.

This paper is organized as follows. In section 2 we recast the neutron transport problem into an equivalent variational
formulation. Then the angle-space approximation framework is introduced in section 3. In particular, we describe the
calculation of the coefficients of the elementary matrices in 3D, and the method for solving the linear system resulting
from the discretization without assembly. Section 4 finally presents applications of the PN-DG discretization on core
and lattice calculation with various geometries and optical properties.

2 The continuous problem

The steady-state linear Boltzmann equation models the behavior of neutral particle population subjected to diverse
interactions with matter: absorption, collisions, fission, at any point of the space-angle-energy phase space. The
multigroup discretization [3] allows to pass from continuous energy to an approximation by a finite number G of energy
groups. The number of energy groups varies between 2 (fast and slow neutrons) and 281 for a fine control over energy
variations during a typical pressurized water reactor lattice calculation. In the rest of this section we introduce the
notations used, the transport problem studied and present the variational formulation.
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Figure 1: An example of a 3D fuel-cell mesh supported by NYMO. In 2D NYMO supports non-conforming unstructured
meshes with curved elements. In 3D it supports 2D extruded meshes.

2.1 Neutron transport problem

Let us consider x ∈ D with D an open bounded set in Rd (d = 1, 2 or 3), with boundary ∂D and outward normal
n. Let ω ∈ S2 with S2 the unit sphere of R3. The angular domain S2 is parametrized by two angles θ ∈ [0, π] and
φ ∈ [0, 2π] such that ω(θ, φ) ∈ S2, ωx = sin θ cosφ, ωy = sin θ sinφ and ωz = cos θ. The integral over S2 is defined
by ∫

S2

f(ω)dω =
1

4π

∫ 2π

0

(∫ π

0

f(θ, φ) sin θdθ

)
dφ.

The integer g identifies the energy group and g ∈ J1, GK. The multigroup flux is then denoted u = (ug(x, ω))g=1,··· ,G.

Let us define the scattering operator H , modeling the transfer of neutrons from an energy-group g′ to another group g
after collision

(Hgu)(x, ω) =

G∑
g′=1

∫
S2

σg,g′

s (x, ω · ω′)ug′
(x, ω′)dω′, (2)

with σg,g′

s being the transfer cross-section, generally anisotropic.

The fission operator F is defined as

(F g)(x, ω) =
∑
α

χg
α(x)

G∑
g′=1

νσg′

f,α(x)

∫
S2

ug′
(x, ω′)dω′. (3)

The quantities νσg
f,α and χg

α are respectively the fission production rate and the fission emission spectrum for isotope α.
The sum over α represent the sum over fissile isotopes.

Given an external source q = (qg)g=1,··· ,G, an incoming flux f = (fg)g=1,··· ,G through the inflow boundary Γ−, and
the different neutron cross-sections, we seek the multigroup flux (ug(x, ω))g=1,··· ,G and eventually the associated
eigenvalue λ solution of

ω · ∇ug + σgug = Hgu+
1

λ
F gu+ qg in X = D × S2, (4)

with the boundary condition
ug = fg on Γ−, (5)

where σg is the total cross-section and Γ± = {(x, ω) ∈ ∂D × S2, ±ω · n(x) > 0}.

In absence of external source and incoming flux, that is q and f are zero, equation (4) is studied as an eigenvalue
problem, the objective being to obtain the effective multiplication factor keff = λ. In the other cases, one sets λ = 1
and one refers to a source problem.
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2.2 Variational formulation

From here on, σg the total cross section is assumed to be a positive non-vanishing function. The variational formulation
proposed in [11] consists in multiplying (4) by the term v + 1

σ (ω · ∇v), with v a sufficiently smooth test function. The
variational space used is the space W where lives the unique solution of the transport problem [16]

W =
{
v ∈ L2(X) / ω · ∇v ∈ L2(X), v|Γ+

∈ L2(Γ+, |ω · n|dsdω)
}
. (6)

For all groups g = 1, · · · , G, the variational problem obtained reads,

find u ∈ W such that ag(ug, v) = hg(u, v) +
1

λ
pg(u, v) + Lg(v), ∀v ∈ W (7)

with

ag(ug, v) =

∫
X

(
1

σg
(ω · ∇ug)(ω · ∇v) + σgugv

)
dωdx+

∫
Γ+

ugv(ω · n)dωds, (8)

hg(u, v) =

∫
X

(
(Hgu)v +

1

σg
(Hgu)(ω · ∇v)

)
dωdx, (9)

pg(u, v) =

∫
X

(
(F gu)v +

1

σg
(F gu)(ω · ∇v)

)
dωdx, (10)

Lg(v) =

∫
X

(
qgv +

1

σg
qg(ω · ∇v)

)
dωdx−

∫
Γ−

fgv(ω · n)dωds. (11)

Under reasonable assumptions about the problem data, it has been established in [11] that the variational formulation (7)
is equivalent to the original transport problem (4). Equivalence of this formulation with transport self-adjoint angular
flux equation (SAAF) [17], least-squares approach and the even (or odd) parity formulation [3, §6] is discussed in [12,
§3].

Since σg is assumed to be non-zero, fully voided regions cannot be modeled. However, numerical tests show that almost
voided regions, with σ of the order of 10−6 are supported.

3 Phase space discretization

The numerical scheme used to solve problem (7) combines spherical harmonics method for the treatment of angular
dependence and discontinuous Galerkin finite element method for spatial discretization. The link between mesh regions
is done using upwind flux at cell interfaces. From [18] we know that DG discretization of the linear advection equation
based on upwind flux is stable. From here on, the energy group number g will be omitted if not needed.

3.1 Angular discretization

The neutron angular flux u(x, ω) can be expanded exactly in terms of real-valued spherical harmonics functions ymn (ω)
[3, Appendix A]

u(x, ω) =

∞∑
n=0

n∑
m=−n

(u, ymn )S2ymn (ω),

where (·, ·)S2 denotes the inner product of L2(S2). Introducing the angular flux moments um
n (x) = (u, ymn )S2 we then

write

u(x, ω) =

∞∑
n=0

n∑
m=−n

um
n (x)ymn (ω) (12)

The first u0
0(x) and second (um

1 (x))m∈{−1,0,1} angular moments of u are respectively the scalar flux and current vector.
The PN method consists in truncating the expansion (12) of the angular flux to the order N , that is:

u(x, ω) ≈ uN (x, ω) =

N∑
n=0

n∑
m=−n

um
n (x)ymn (ω), (13)

It remains to determine the flux moments um
n (x).
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3.2 Spatial discretization

We proceed to the spatial discretization using DG finite elements.

3.2.1 Three-dimensional meshes

The spatial domain D is meshed into disjoints elements (or regions) Dr. The mesh can be unstructured and non-
conforming, that is with hanging nodes. Curved elements (circle or circular arc) are considered to be able to represent
cladding surrounding the fuel rods. In 3D, prismatic meshes are sufficient to model the geometry of most types of
nuclear reactors. Then each 3D region D3D

r is given as a base face D2D
r extruded along the z direction:

D3D
r = D2D

r × [z0, z1].

Each face F 3D of ∂D3D
r is either a horizontal face or a vertical face. The vertical faces are obtained by extruding a line

segment, circle or a circular arc in the horizontal plane along the z axis. Horizontal faces treatment is identical to that of
2D regions.

F 3D =

{
F 2D × [z0, z1] if F 3D is vertical,
D2D

r × {z0} else.

3.2.2 Angular moments approximation

To obtain a full discretization, the angular flux moments um
n (x) are approximated by piecewise polynomial over the

mesh Dh of domain D. With any Dr ∈ Dh, we associate a finite-dimensional space Pk(Dr) of d-variate polynomials
of total degree at most k on Dr. Then we collect all those spaces to form the space of piecewise polynomials over Dh

Pk
h =

{
v ∈ L2(D); ∀Dr ∈ Dh, v|Dr

∈ Pk(Dr)
}
. (14)

Given a basis, let say φj(x) of Pk
h, the fully discrete solution uN,k can be written as a weighted sum of basis functions

φjy
m
n :

uN,k =

N∑
n=0

n∑
m=−n

J∑
j=1

um
n,jφj(x)y

m
n (ω), (15)

Here J represent the total number of spatial degree of freedom. The coefficients um
n,j fully determine the approximated

flux. The incoming flux f and the source term q are approximated in the same way. The approximation space is
Wh = span(φjy

m
n ) (16)

and it is useful to notice that

dimWh = card(Dh)

(
k + d

d

)
(N + 1)(

d− 1

2
N + 1).

Taking into account the energy discretization for a multigroup calculation, the total number of degrees of freedom is
#dof = GdimWh.

The local approximation space Wh(Dr) on each element is obtained using the space Pk(Dr) instead of the whole
polynomial space Pk

h. The table 1 provides the number of degrees of freedom per element induced by a PN-DG (PN -Pk)
discretization in 3D.

Table 1: Number of degrees of freedom per element involved in a 3D PN-DG discretization.
#dof P0 P1 P2 P3 P4 P5 P6

P0 1 4 9 16 25 36 49
P1 4 16 36 64 100 144 226
P2 10 40 90 160 250 360 490

3.3 The fully discretized problem

Due to the discontinuous nature of the spatial approximation, a numerical flux at mesh cell interfaces have to be set.
The natural choice when dealing with particle transport is the upwind numerical flux [9, 19]. For an interior face F
shared by two cells Dr1 and Dr2 with respective outward normal n1, n2, the numerical flux across F is given by

F(u) = u↑ =

{
u|Dr2

, if ω · n1 < 0

u|Dr1
, if ω · n1 > 0.

(17)
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For F ∈ ∂D a boundary face with outward normal n

F(u) =

{
f, if ω · n < 0

u, if ω · n > 0.
(18)

In particular, inside a region Dr1 the incoming flux on a face F ∈ ∂Dr1 is given either by the boundary condition f if
F ∈ ∂Dr1 ∩ ∂D or by the flux in the adjacent region Dr2 if F is an interface. Using this we derive a local variational
formulation. On each mesh element Dr, let us denote by ar, hr and pr the restriction of the bilinear forms defined in
(8) - (10) to the local phase space Xr = Dr × S2. For all cells Dr ∈ Dh the local discretized problem reads,

find u ∈ Wh(Dr) such that ar(u, v) = hr(u, v) +
1

λ
pr(u, v) + Lr(v), ∀v ∈ Wh(Dr) (19)

with

Lr(v) =

∫
Xr

(
qv +

1

σ
q(ω · ∇v)

)
dωdx−

∫
Γ−(Dr)

F(u)v(ω · n)dωds. (20)

Defined at (21), Γ−(Dr) denote the inflow boundary of Xr. Following definitions (17) and (18) one can notice that in
(20), F(u) is independent of u, and is either the boundary flux f or the flux coming from the neighbouring regions of
Dr.

Furthermore, one can sum (19) over all mesh elements to obtain a global formulation. In practice, the local formulation
is the one used for implementation purpose, since as described in the section 3.5, the matrices resulting from the
discretization are not assembled.

The standard finite element framework follows by replacing u, f and q by their respective approximations and v with
φj′(x)y

m′

n′ (ω) in (19). One obtains a matrix system of unknowns um
n,j (15). The determination of these matrices

therefore involves the calculation of volume integrals and surface integrals.

3.4 3D Elementary Matrices

Following the 3D mesh cells and faces classification presented in 3.2.1, one can notice that 3D matrix resulting from the
discretization can be recasted into 2D matrix calculations. We refer to [12] for more details about 2D matrix calculation.

Three kinds of integrals are encountered after discretization: volumic integrals
∫
Dr

•dx, integrals over the angular
variable

∫
S2 •dω and integrals over the boundary of a region (Γ±(Dr)) where the two types mentioned above are

coupled
∫
∂Dr

∫
±(ω·n)>0

•(ω · n)dωds . The first two are straightforward to compute. We describe how to calculate the
third integral type, depending on the type of face: horizontal or vertical.

A region boundary can be rewritten

Γ±(Dr) =
⋃

F∈∂Dr

{
(x, ω) ∈ F × S2 / ± ω · nF > 0

}
. (21)

Let us denote n the unit outgoing normal. The map from cartesian to spherical coordinates is (nx, ny, nz) 7→ (θn, φn)
with nx = sin θn cosφn, ny = sin θn sinφn and nz = cos θn. The third integral type can then be rewritten using∫

±(ω·n)>0

y(ω)(ω · n)dω =

∫ θ1

θ0

f(θ)dθ

∫ φ1

φ0

g(φ)dφ.

It remains to determine θ0, θ1, φ0 and φ1.

3.4.1 Horizontal faces

If the face F is a bottom base of Dr, then n(0, 0,−1) and ω · n = − cos θ. On the incoming half-sphere S2
−, ω · n < 0

implies − cos(θ) < 0. Therefore θ ∈
[
−π

2 ,
π
2

]
∩ [0, π] and finally θ0 = 0 and θ1 = π

2 . Symmetrically for the outgoing
half-sphere S2

+, θ0 = π
2 and θ1 = π. In the two cases φ0 = 0 and φ1 = 2π. The same developments applies for upper

horizontal faces.

3.4.2 Vertical faces

If the face F is a flat lateral face of Dr, using θn = π
2 implies n(cosφn, sinφn, 0) then ω · n = sin θ cos(φ − φn).

Since θ ∈ [0, π], the sign of ω · n only depends on the sign of cos(φ− φn). On the incoming half-sphere, ω · n < 0
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implies φ0 = φn + π
2 and φ1 = φn + 3π

2 . Symmetrical arguments applies for the outgoing half-sphere. In the two
cases θ0 = 0 and θ1 = π. The case of curved lateral faces can also be treated by noting that the normal n in this case
is parametrized by an element M of the arc at the base of the face. In summary n = n(M) with nx = cos(φn(M)),
ny = sin(φn(M)) and nz = 0.

3.5 Assembly-free linear system resolution

Geometrically, a reactor core consists of a set of assemblies, similarly each assembly is made up of a set of fuel
rods. One can therefore consider using these repetitive patterns to significantly reduce the memory footprint and the
simulation time. Indeed, due to the choice of the basis functions (φj)j , presented in [12, §13], from two mesh elements
identical by translation, the same elementary matrices are produced. More precisely, we refer to geometric elementary
matrices, as they do not depend on the cross-sections in the region. These elements can be grouped by clusters of
elements identical up to a translation, thus defining an equivalence class, Figure 2. We define the equivalence class
[Dr] of an element Dr ∈ Dh as the set of cells Ds ∈ Dh such that Ds is the image of Dr by a translation, let us note
Ds ∼ Dr

Ds ∈ [Dr] ⇔ Ds ∼ Dr.

Two elements of the mesh Dh are equivalent to each other if and only if they belong to the same equivalence class. Any
element of [Dr] characterizes the class, and may be used to represent it. In practice the chosen representative is the cell
with the smallest r number.

First, we need to determine the set of equivalence classes of the mesh, with respect to the equivalence relation ∼, called
the quotient set. The underlying idea is to work in the quotient set as on the mesh, but without distinguishing between
equivalent elements. It is therefore sufficient to calculate the geometric elementary matrices of each class representative.
Likewise the matrix-vector product operator is written using the canonical application Dr 7→ D⋆

r , which associates
to each element of Dh its class representative. The reuse of data already present inside the cache memory reduce the
need to repeatedly fetch data from main memory. In the end, the solution of the linear system is performed without
the need to assemble the matrix A resulting from the bilinear form a(·, ·) (8). It is sufficient to pass the matrix-vector
product operator to the Krylov solver. The solvers implemented in NYMO based on this principle are BICGSTAB [20]
and GMRES [21].

4 Applications

The numerical method described in the previous sections has been employed to solve to two 3D core calculation
problems available in the literature. The first one is Takeda benchmark [22] and the second is the C5G7 benchmark [23].
These problems provide different configurations (10+3 in total), which offer a wide variety of geometries (cartesian,
hexagonal, unstructured) with different optical properties, representative of FBR and PWR reactors. The simulations
presented are eigenvalue calculations. The errors presented are relative error in pcm (1 pcm = 10−5) regarding the
reference solution (the Monte-Carlo solution provided by the benchmark authors)

er =
λapprox − λref

λref
.

Two error criteria determine the convergence, one on the eigenvalue, the other on the fission source. The calculation
stops when for two successive iterations, the variations on these two values are both below 10−5. The linear solver used
is GMRES [21], using the assembly-free framework described in section 3.5.

Pin power distributions presented in sections 4.2 and 4.3 are normalized such that the total power is equal to the number
of fuel pins. To compare the pin power solution obtained to the reference distribution, three errors are calculated: the
average (AVG), root mean square (RMS) and mean relative (MRE) pin power per cent error.

AV G =
1

N

N∑
n=1

|en| , RMS =

√√√√ 1

N

N∑
n=1

|e2n|, MRE =
1

N · pavg

N∑
n=1

|en| · pn. (22)

The number of fuel pins is denoted N , pn and en are respectively the reference value and the relative error in the nth
fuel pin, pavg is the reference average power.

All calculations are performed on a standard workstation housing two 12-core Intel® Xeon® Silver 4214 CPU at
2.20GHz.
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Figure 2: 312-cell mesh of an eighth PWR assembly. The elements of the same colors are equal up to a translation
and thus belong to the same equivalence class. There are 49 classes, dividing the number of geometric matrices to be
computed and stored by 6.

4.1 Homogenised core calculation: Takeda Benchmark

The Takeda benchmark suite [22] comprises four different reactor models with two or three distinct cases per model,
this amounts to 10 cases in total. All the calculations were performed using NYMO solver with P4 order in angle and
linear polynomial P1 in space. The reference Monte-Carlo solutions are taken from [22, p. 23]. For all calculated
models, the relative errors compared to reference eigenvalue are below 40 pcm, with in particular one pcm obtained
for case 2 of model 2. Models 1 and 2 eigenvalue calculation are performed in less than a minute. Here we give more
details about the results obtained for problems 3 and 4, these being the most heterogeneous and time-consuming. Finally
Figure 5 show the asymptotic behaviour of the keff according to the angular discretization.

4.1.1 Takeda model 3: cartesian geometry axially heterogeneous FBR

This model problem (Figure 3) is a Fast Breeder Reactor (FBR) core that has reflector and internal blanket region.
There are three different cases depending on the material inserted in the control rod positions (rods or blanket cells).
The core has 1/4 radial and 1/2 axial symmetry and the mesh elements used are of size ∆x = ∆y = ∆z = 5 cm. We
observe in Table 2 that the error is quite small (less than 38 pcm) with less than one minute calculation time.

4.1.2 Takeda model 4: hexagonal geometry small FBR

This model (Figure 4) is a FBR core and has prismatic hexagonal geometry. Three cases with different control rod
patterns are studied: withdrawn (case 1), half inserted (case 2) and fully inserted rods (case 3). For the mesh, all
hexagons are divided into 24 (case 1) or 54 (case 2 and 3) equilateral triangles with ∆z = 5 cm. Indeed, the presence of
the control rods creates a discontinuity, and the mesh has been refined to take it into account. Table 2 shows that this

8



GG:  idGG    plane: 1/4

AXB
AXR
COR
CRD
CRP
INB
MTX
RDB
RDR

(a) X-Y

CR

CRP

Internal Blanket

Core

Radial Blanket

Radial reflector

Empty Matrix

Axial blanket

Axial reflector

(b) X-Z

Figure 3: Takeda model 3, a cartesian geometry axially heterogeneous fast breeder reactor.

allows us to obtain excellent results (less than 22 pcm) for all cases. Figure 5 shows the monotone convergence in angle,
especially if we isolate odd and even orders. We go further into the convergence study in section 4.2.

GH:  idGH_takeda4

Too many values !

AXBLKT
AXRFLCT
DWITHMOD
DWOUTMOD
KNK1RFL
NASTZO
R
RWITHMOD
RWOUTMOD
S
STEEL
T
TESTZONE
U

(a) X-Y

Steel

CRP

Axial Reflector

Test Zone

Driver Without Moderator

Driver With Moderator

Reflector Without Moderator

Reflector With Moderator

KNK-1 Reflector

Sodium/Steel zone

(b) X-Z

Figure 4: Takeda model 4, an hexagonal geometry small fast breeder reactor.

Table 2: Relative error (pcm) and time (s) obtained with P4 and P1 for Takeda models 3 and 4.
Reference NYMO error cpu time

Case 1 0.97090 0.97060 -30 49
Case 2 1.00050 1.00089 38 49
Case 3 1.02140 1.02147 6 51

(a) Model 3

Reference NYMO error cpu time

Case 1 1.09510 1.09521 10 474
Case 2 0.98330 0.98352 22 2636
Case 3 0.87990 0.87994 4 2349

(b) Model 4
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Figure 5: Convergence of the eigenvalue according to the angular discretization order.

4.2 Heterogeneous core calculation: 3D C5G7 Problem

The 3-D extended C5G7 MOx fuel assembly benchmark [23] is a problem designed to evaluate the ability of deter-
ministic transport codes to handle reactor problems without spatial homogenization. It should be noted that in this
benchmark, the cladding surrounding the fuel rod is smeared with the fuel pellet. The objectives are to calculate the
effective multiplication factor and the normalized fission rate distributions (pin power) in three axial slices of the core.

4.2.1 Benchmark description and space-angular discretization

Figure 6a shows the radial configuration of this 128.52×128.52×128.52 cm3 small Pressurized Water Reactor (PWR)
core, made up of four by four fuel assemblies, modeled in 1/4 radial symmetry and surrounded by a water reflector.
Each assembly consists of a 17×17 lattice of square pin cells with the cell side equal to 1.26 cm. Fuel pins, control
rods, guide tubes, and fission chambers are of circular shape with a 0.54 cm radius. The reflection boundary condition
in zmin plane with inserted control rods makes the problem non-physical, which is explicitly stated in the problem
description. Three problems (Unrodded, Rodded A and Rodded B) are considered to correspond to various levels of
control rod insertion. The seven-group cross-sections with isotropic scattering for each material and detailed description
are provided in [23].

For all calculation, the radial mesh used is described in Figure 6b. This radial mesh is the unique one applied to all
calculations and it contains 15028 cells. Axial mesh has been varied starting from the coarsest one (denoted as Z1)
that has only one mesh interval within each fuel slice and reflector, and refining it progressively by subdividing these
slices into two (Z2), four (Z4) and eight (Z8) intervals. For polynomial discretization space, Pk refers to piecewise
polynomial functions space of total degree at most k. That is, P0 the space of piecewise constant polynomial, P1 refers
to space of piecewise linear polynomial and P2 refers to space of piecewise quadratic polynomial.

We performed a series of calculations by varying the PN order from 1 to 6, the polynomial basis used are constant,
linear and quadratic and the axial mesh refinement are 1, 2, 4 or 8. This involves 72 eigenvalue calculations for each
test case. As before, each case was run on 24-core computer with an approximate computing time between 10 seconds
(P1, P0 without axial refinement) and 20 hours (P6, P2, Z8) for the most refined case.

4.2.2 Results of calculation and discussion

The first results show that, for all PN orders, the error on the P0 polynomial space is high, so we discard these
configurations from the further analysis. Moreover, the axial refinement does not seem to significantly improve the
results. The differences between Z4 and Z8 refinements being very small (between 0 and 4 pcm) we excluded Z8 from
the rest of the analysis. Thus, we may conclude that the flux does not vary much axially and that it is not necessary
to refine the mesh in this direction. This assumption is partially confirmed by [24], who studied the influence of the
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Figure 6: C5G7 quarter core radial geometry configuration and mesh used for calculations.

control rods by analysing the scalar fluxes along control rods. The authors observe that the axial scalar fluxes decreases
in the vicinity of the reflector, but vary little in each slice in MOx and UOx outer assemblies. Moreover, the flux
variation is more pronounced in the UOx inner assembly when the control rods are inserted (Rodded A and B). In
our case, for Rodded A, the best results are still obtained without refinement, while Rodded B gives better results by
subdividing each z-slice in two. Tables 3, 4 and 5 present for each case, the keff obtained with one low-order and one
high-order discretization. For the Unrodded and Rodded A cases, the best results are respectively 13 pcm and -29 pcm
and obtained with P5 P2, while for Rodded B the best solution have 6 pcm error and obtained with P6 P1. Considering
only the configurations running in less than 3 min (180s) the best result is -48 pcm (P1 P2 Z1) for Unrodded, -80 pcm
for Rodded A and -162 pcm Rodded B (the two with P2 P1 Z1).

Table 3: Eigenvalue error for Unrodded case of C5G7 problem without axial refinement (Z1).
Unrodded keff error (pcm) time (s)

MCNP 1.14308 ± 6 -

P1 P2 1.14253 -48 157
P5 P2 1.14324 13 5191

Table 4: Eigenvalue error for Rodded A case of C5G7 problem without axial refinement (Z1).
Rodded A keff error (pcm) time (s)

MCNP 1.12806 ± 6 -

P2 P1 1.12715 -80 142
P5 P2 1.12773 -29 5389
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Table 5: Eigenvalue error for Rodded B case of C5G7 problem, each axial slice is divided by two (Z2).
Rodded B keff error (pcm) time (s)

MCNP 1.07777 ± 6 -

P2 P1 1.07894 108 322
P6 P1 1.07784 6 6084

Figure 7 shows the variation of eigenvalue relative error according to PN order for each of the polynomial spaces P1 and
P2. In all three cases, the results are presented for Z2 refinement. We make several observations here. First, for all
polynomial spaces, separating the even (green lines) and odd (red lines) PN orders, we observe a monotone convergence.
In the first two cases however, the even PN orders stagnate or increase slightly. This behaviour is for the moment
unexplained. Second, for even (resp. odd) PN the error obtained is smaller in polynomial space P1 (resp. P2). And
finally, we note that the even (resp. odd) PN converge to the reference solution by overestimating (resp. underestimating)
it. This oscillatory approach to the asymptotic regime, but monotonous if one takes separately odd and even orders, has
already been observed in previous works on the 2D solutions, in [12] on reactivity and in [25] on the flux shape. In the
latter, a different finite element approximation is used, which may suggest that this behavior is due to the properties of
spherical harmonic approximation itself, but for the moment it remains unexplained. All these observations deserve
further investigation.

We next proceed to the pin power calculations with the configurations that provide the best multiplication factor of
each case. Table 6 shows the error made at maximum pin power, the average (AVG), root mean square (RMS) and
mean relative (MRE) errors on the pin power distribution (defined in [23, p. 25]). The calculations are performed with
P5 P2 Z1 for the first two cases and P6 P1 Z2 for Rodded B. For the first two cases, the calculations exhibit errors less
than 0.6% compared to the MCNP solution. We obtain a slightly bigger error (less than 1%) on the last case because
of strong discontinuities introduced by control rods insertion. In overall, these results comply well with the reference
values.

Table 6: Pin power distribution metrics for C5G7 benchmark problem.
Benchmark case Unrodded Rodded A Rodded B

Pin power
error (%)

Max Rate -0.084 -0.398 -1.221
AVG 0.225 0.301 0.743
RMS 0.280 0.398 0.835
MRE 0.171 0.249 0.764

Assembly power
error (%)

UOx Inner 0.014 -0.178 -0.980
MOx -0.135 0.041 0.476
UOx Outer 0.365 0.662 0.866

4.3 Lattice Calculation: 281-groups PWR UOx Fuel Assembly

This section is devoted to eigenvalue and pin power distribution calculation a 2D PWR UO2 Fuel Assembly described
in [26, §III. 1]. It is a typical 17×17 pin assembly motif containing UO2 and gadolinium fuel rods and guide tubes. The
aim of this study is to present a realistic test case with 281 energy groups taking into account anisotropic scattering. The
results obtained are compared with deterministic solvers, here TDT [27], the APOLLO3® characteristics method (MOC)
and IDT [28, 29, 30] the method of short characteristics.

4.3.1 Case description and discretization

Figure 8 shows a schematic view of the UO2 fuel assembly geometry. Due to symmetries, it is sufficient to represent
one-eighth of the structure. Each pin cell is modelled without homogenization, the thickness of cladding being 0.064 cm.
In this study, the original UO2 properties are replaced with 4.2% enriched fuel with isotopic composition given in Table 7.
The order of anisotropy is 3, and a self-shielding calculation is performed first to obtain 281-groups cross-sections.

The mesh used for this experiment is displayed in Figure 9. The fuel pin is subdivided in six concentric annuli while the
gadolinium bearing fuel is subdivided into eleven, accounting for spatially dependent self-shielding effect and preparing
the model for depletion calculation. For NYMO, P5 angular approximation and constant P0 spatial discretization yield to
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Figure 7: 3D-C5G7 k−eigenvalue relative error in pcm according to the angular-space discretization. Even (resp. odd)
PN orders are connected by green (resp. red) dotted lines.

16 million of degrees of freedom. The step-constant MOC (TDT) is used with 30 azimuthal angles and 12 polar angles.
The IDT solver is used with a classical S8 level symmetric quadrature and linear characteristic option.
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Figure 8: PWR UO2 fuel assembly 1/8th geometry layout, with UO2 fuel rod (U), gadolinium pins (Gd), RCC guide
thimble (T) and instrumentation thimble (I).

Table 7: UOX fuel composition.

Isotope Atomic number density
(#/barn/cm)

U234 4.6498E-07
U235 9.7229E-04
U236 2.3051E-07
U238 2.1874E-02
O16 4.5693E-02

4.3.2 Results and discussions

Table 8 presents eigenvalue, computation time and overall pin power distribution error when comparing NYMO to TDT
and IDT. A keff of 0.999568 have been obtained, 121 pcm above the TDT solution. The 400 pcm spread compared to
IDT is due to the absence of ring sectors in IDT calculations. To conclude the analysis, the pin power distributions are
compared. The pin power solutions (Figure 10) are normalized such that the total power is equal to the number of fuel
pins (264). As shown in Figure 11, the NYMO normalized pin power are all within 1 % of the TDT results and are less
than 1.47 % regarding IDT.

The nature of the two approximations being very different, this results is considered to be very satisfactory.

Table 8: NYMO eigenvalue and power map compared to TDT and IDT for the PWR UO2 assembly.
NYMO TDT IDT

keff 0.999568 0.998360 0.995493
∆keff (pcm) - 121 407

Max (%) - 0.794 1.468
AVG (%) - 0.314 0.461
RMS (%) - 0.384 0.607
MRE (%) - 0.295 0.381

time (s) 142 176 -
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Figure 9: Mesh used for PWR UO2 Fuel Assembly Calculation.

5 Conclusion

The implementation of the three-dimensional extension of the previously developed discontinuous Galerkin PN method
has been described and its capabilities illustrated on the examples of the well-known Takeda and C5G7 benchmarks.
The discretization method is able to handle the mesh elements of different shapes, in general arbitrary, but in practical
applications all geometries describing the fuel elements without any simplification nor homogenisation. The presented
results show that the method is able to attain an accuracy better than 100 pcm in reactivity for a computation time less
than 10 minutes on a desktop machine. The investigated cases show an error smaller than 30 pcm and in some of these
of order of one pcm.

Moreover, tests have been conducted on a realistic of PWR assembly in 281 energy groups with anisotropic scattering,
and the obtained results agreed well with other, characteristic-based transport solvers.

The convergence behaviour of odd and even order expansions are different and need further theoretical analysis.
Nevertheless, the method seems to be consistent and stable showing competitive computational times, and it opens the
way to its application to high fidelity simulations of a whole core. Obviously, this approach needs an implementation of
a distributed memory parallel algorithm. Current work focused on convergence analysis of the method and distributed
memory parallelization.
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Figure 11: NYMO power distribution absolute relative error (in %) related to TDT (top) and IDT (bottom).
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