
M&C 2023 - The International Conference on Mathematics and Computational Methods Applied
to Nuclear Science and Engineering · Niagara Falls, Ontario, Canada · August 13 – 17, 2023

The PN form of the Neutron Transport Problem Achieves Linear Scalability
Through Domain Decomposition

K. Assogba and L. Bourhrara
Université Paris-Saclay, CEA, Service d’Études des Réacteurs et de Mathématiques Appliquées

91191 Gif-sur-Yvette, France

kenneth.assogba@cea.fr, lahbib.bourhrara@cea.fr

ABSTRACT

Due to strong coupling between the angular moments, the spherical harmonics (PN) formulation of
the neutron transport equation has been neglected in favor of the discrete ordinates (SN) form.
In this work, we target large-scale neutron transport simulation using a combined discontinuous
Galerkin (DG) – spherical harmonics approximation. We leverage the benefits of DG discretization
to wrap the previous developed solver, called NYMO, in a canonical ghost-mesh based domain
decomposition framework. The developed solver handles unstructured, curved and non-conforming
meshes with vacuum and reflection as boundary conditions. Robustness, strong and weak scalability
experiments have been conducted on the CEA’s pre-exascale system Topaze. We reach and maintain
a strong scaling efficiency of 100 % up to 4096 cores and 80 % up to 8192 cores. In particular, a
calculation with 913 million degrees of freedom is performed in 101 seconds. Thus outperforming
previously published results for PN transport as well as many SN and SPN solvers.

KEYWORDS: domain decomposition, discontinuous Galerkin, spherical harmonics, MPI, OpenMP

1. INTRODUCTION

The development of new computing architectures, particularly at the exascale era (systems capable of at
least 1018 floating point operations per second) is reshaping the landscape of nuclear reactors physics. Such
systems enables to model the entire lifecycle of a nuclear reactor at pin-cell scale, while engineers will be
able to iterate rapidly on the design of advanced reactor concepts. To fully exploit the capabilities of these
new machines, it is necessary to develop scalable approximation methods and software code.

1.1. Neutron transport at scale

Research on high-performance numerical methods in neutronics has been focused on the SN method.
Proposed in the 90s at Los Alamos National Laboratory, the Koch-Baker-Alcouffe (KBA) algorithm [1]
quickly established as a way to perform SN sweeps efficiently. In 2017, using this algorithm, the Denovo
SN code [2] shows a strong scalability efficiency around 90% at 144 cores and ∼70% at 3600 cores using
S16 approximation. The weak scalability efficiency provided is greater than 100% up to 40k cores compared
to the computation time on 4096 cores. More recently and in another register, Vermaak et al. [3] propose
a parallel sweeping method able to handle meshes with cyclic dependencies. The resulting solver named
Chi-Tech, achieves a weak scaling efficiency >80% on more than 100k processes on a problem with 87.7
trillion unknowns. For strong scaling on a mesh with cyclic dependencies, the efficiency is 58% or 34% at
2048 process depending on the partitioning strategy used.

Inspired by parallel methods for elliptic problems, a concomitant approach has been developed, using domain
decomposition à la Schwarz. In [4], Jamelot and Ciarlet propose a Schwarz iterative algorithm with Robin
interface conditions for the SPN diffusion model. On a 3D 900 MWe pressurized water reactor core, the
authors show that the method can achieve good parallel performance on up to 128 cores, with an efficiency
of around 80%. In [5], the authors propose a domain decomposition method based on a block-Jacobi
algorithm for Minaret the APOLLO3 SN transport core solver. However, the proposed method suffers

Kenneth Assogba and Lahbib Bourhrara

from convergence penalty in terms of both computing time and number of iterations [6]. For a 2D core with
675k mesh cells the efficiency is between 32 and 37% for the calculations performed with MPI.

On the PN side, in the mid 90s, de Oliveira et al. [7] describe a multi-block-explicit domain decomposition
method. More recently, PARAFISH [8], a PN–finite-element neutron code employ an algebraic domain-
decomposition to solve the second-order even-parity form of the Boltzmann equation. On a benchmark with
P7 approximation with a total of 3,150,000 unknowns the efficiency is around 28% at 125 cores.

Efficiency being a good common metric, Table 1 summarizes strong scaling results for Minos, Minaret
and PARAFISH. These results are compared to those obtained by NYMO on a problem with 913 million
unknowns. NYMO maintains near perfect efficiency with ease.

Table 1: Comparison of strong scalability of parallel neutronics finite element solvers. The data
reported are from the best published results for each solver.

Efficiency % (#core) Model

PARAFISH [8, §3.3] 53 (5) 37 (25) 28 (125) Transport PN
Minaret [5, §3.3] 64 (13) 32 (27) 37 (39) Transport SN
Minos [4, §7.4] 88 (32) 88 (64) 85 (128) Diffusion SPN

NYMO 110 (2048) 113 (4096) 82 (8192) Transport PN

1.2. Target and outline

This work reports on the development of a simple domain decomposition method for a spherical harmonics –
discontinuous Galerkin transport solver. A core component of this approach is the block structure of the
matrices arising from the discretization. The off-diagonal blocks then describe the interactions between
adjacent mesh elements and in fact allow the coupling of adjacent subdomains through the transmission of the
upwind flux. This coupling is easily carried out at the matrix-vector product level. The MPI communications
are made in a non-blocking way, thus enabling the overlap of communications and calculations. Due to the
choice of the finite element basis functions, the elementary matrices of identical elements, given a translation,
are the same, thus allowing to implement the solver in a matrix assembly-free fashion.

By positioning at the algebraic scale, non-conforming and unstructured meshes with curved faces can
be easily handled. We overcome the problem of partitioning these types of meshes by implementing a
partitioning strategy based on Hilbert space filing curves [9], along with a naive partitioning, using the
mesh numbering. Finally, the implementation is minimally intrusive and the parallel execution requires no
additional effort from the end-users.

These developments have been conducted within NYMO [10–12], the multipurpose PN-transport solver of the
reactor physics platform APOLLO3® [13].

Numerical experiment have been conducted on the pre-exascale cluster Topaze. These tests point out that the
method achieves almost perfect linear scaling. The asynchronous communications are very effective, thus
the overlap between communications and computations is near perfect. The solver is moreover robust, as the
variations on the obtained solutions compared to the sequential solver are close to the machine precision.

This article is organized as follows: in section 2 we present the multigroup transport model and the variational
formulation used. Then in section 3 we describe the discretization, in particular the elements of interest
for the parallelism. In section 4 we describe the important steps of the algorithm. Finally in section 5 we
evaluate its robustness, weak and strong scalability behavior.

2. MODEL

The neutron transport equation describes the neutron distribution in a medium, taking into account scattering,
fission and external sources. One wishes to determine the multigroup neutron flux ug(x, ω) at any point

2

PN Neutron Transport Problem Achieves Linear Scalability Through Domain Decomposition

(x, ω) of the phase space X = D × S2. The space variable is denoted x and D is the spatial domain. The
angular direction is denoted ω and S2 is the angular domain. The subscript g is the energy group, and unless
necessary is omitted in the following. In the phase space X with an incoming flux f through the inflow
boundary Γ−, the problem is written,

ω · ∇u+ σu = q in X (1a)
u = f on Γ− (1b)

where σ denotes the macroscopic total cross section and q the neutron source taking into account scattering
(Hu) and possibly fission (Fu) and external neutron sources (qext). The eigenvalue problem consists in
finding the eigenvalue λ associated with u when there is no external source.

Let V denote the variational space, and v ∈ V a test function. The outgoing boundary is denoted Γ+.
We multiply (1a) by (v + 1

σω · ∇v) and then integrate over the phase space. After using Green’s formula
(see [14]) and boundary condition (1b), one obtain the variational problem:

find u ∈ V such that a(u, v) = L(v), ∀v ∈ V. (2)

With

a(u, v) =

∫
X

(
1

σ
(ω · ∇u)(ω · ∇v) + σuv

)
+

∫
Γ+

uv(ω · n), (3)

L(v) =

∫
X
q

(
v +

1

σ
(ω · ∇v)

)
−
∫
Γ−

fv(ω · n). (4)

Under assumptions about data f , q and σ, this problem is well posed in the sense of Hadamard [14]. That is
to say that it admits a unique solution and this solution depends continuously on the data of the problem. In
the following, let us discretize the problem (2).

3. DISCRETIZATION

The discontinuous Galerkin – spherical harmonics numerical scheme for the linear Boltzmann equation
has been introduced in [10], [12] and [11]. Let us recall here the key elements we need for the parallel
implementation of the solver. The spherical harmonics method or PN consists in developing with truncation
to the order N , the angular flux on the real spherical harmonics basis ymn (ω) [10],

uN (x, ω) =

N∑
n=0

n∑
m=−n

umn (x)ymn (ω). (5)

The unknown resulting from this development umn , called the flux moment, is approached by piecewise
polynomials of degree at most k, which we note in the following Pk = span {φ1, . . . , φJ}. In the end,

uN,k(x, ω) =

N∑
n=0

n∑
m=−n

J∑
j=1

umn,jφj(x)y
m
n (ω). (6)

The approximation space thus constructed is Vh = span(φjy
m
n). The discrete problem is:

find u ∈ Vh such that a(u, v) = L(v), ∀v ∈ Vh. (7)

The incoming flux and the sources are developed in the same way. The test function is replaced by
v = φi(x)y

k
l (ω). In each mesh cell Dr, the result is a local linear system of unknowns ur =

(
umn,j

) ∣∣∣
Dr

Arur = qr (8)

3

Kenneth Assogba and Lahbib Bourhrara

with

Arur =

(
1

σ
A0

r + σA1
r +A+

r

)
ur +

∑
F∈∂Dr

A−
Fu

↑
F , (9)

qr =

(
A1

r +
1

σ
A2

r

)
q, (10)

and u↑F is either the boundary flux f or the flux coming from the neighboring regions of Dr through the
internal face F . The elementary matrices are defined as

A0
r(i, n,m, j, l, k) =

3∑
p=1

3∑
q=1

(∫
Dr

∂pφi∂qφj dx

)(∫
S2

ωpωqy
m
n ykl dω

)
, (11)

A1
r(i, n,m, j, l, k) = δn,lδm,k

∫
Dr

φiφj dx , (12)

A2
r(i, n,m, j, l, k) =

3∑
p=1

(∫
Dr

(∂pφi)φj dx

)(∫
S2

ωpy
m
n ykl dω

)
, (13)

A+
r (i, n,m, j, l, k) =

∑
F∈∂Dr

∫
F
φiφj

∫
(ω·n)>0

ymn ykl (ω · n) dω ds , (14)

A−
F (i, n,m, j, l, k) =

∫
F
φiφj

∫
(ω·n)<0

ymn ykl (ω · n) dω ds . (15)

The coefficients of these matrices are calculated in an exact manner according to the method described
in [10].

3.1. Mesh equivalence class

The base of polynomials {φj} depends on the region of calculation. With a judicious choice of this base [10]
the elementary matrices 11-15 are the same for equivalent regions, we mean by equivalent regions that are
identical up a translation. Thus by grouping all the regions by packets where each packet contains only
equivalent regions, the calculation of the elementary matrices is done only once per packet of equivalent
regions and not for each calculation region. This results in substantial gains in storage and simulation time
due to efficient cache fetching. The equivalence classes of a small mesh are shown on Figure 1.

In the domain decomposition framework, the solution on each subdomain is coupled to the solution on its
neighboring subdomains using ghost cell communication. Three basic components are needed: a mesh
partitioner, distributed sparse matrix-vector multiplication (SpMV) and dot-products. In the next, we present
each ingredient and the recipe to combine them.

4. IMPLEMENTATION

Modern computing clusters are made up of independent computing nodes linked together by a fast in-
terconnection network. Programmatic access to these – so-called distributed – systems can be achieved
through MPI (Message Passing Interface). The MPI standard defines a library of functions that allow parallel
programming by exchanging messages. Within each host device having continuous memory addressing
(also referred to as NUMA node) it is possible to spread a task across threads through OpenMP compiler
directives.

The move to distributed systems requires effective design of data distribution and communication between
processes. A straightforward advantage is that it allows extremely large problems to be solved, since each
process holds only a small part of the original data. The implementation is simplified in the context of
discontinuous Galerkin approximation. In fact, each mesh element is only coupled with its neighboring cells.

4

PN Neutron Transport Problem Achieves Linear Scalability Through Domain Decomposition

Figure 1: Equivalence classes of a portion of a mesh.

Thus the matrices resulting from this approximation are essentially block diagonal, with off-diagonal blocks
coupling neighboring cells. As a corollary, after data distribution, each subdomain only needs to fetch the
flux from the cells that share a face with its local cells.

4.1. Mesh Partitioning

Let us denote by nd the number of MPI process in the global communicator. The parallel resolution start
by partitioning the initial mesh into nd subdomains. One need to guarantee a load balancing between
the processes while minimizing the communication between adjacent sub-domains. The load balancing
criterion is ensured by imposing that the number of elements inside each subdomain is the same. Two widely
used mesh partitioners are Metis [15] and Scotch [16], but they do not provide the capabilities to handle
non-conforming meshes with curved elements. We have therefore implemented two partitioning strategies.
The first one is based on mesh numbering and is called simple partitioning in the following. The second one
is based on Hilbert space-filling curves [9] and is referred to as geometric partitioning. The advantage of
space filling curves is that locality of mesh cells is fairly well preserved. Figure 2 shows the partitioning of a
set of 4 assemblies. Let us note here that the numbering is contiguous within an assembly. Thus the naive
partitioning also produces harmonious results.

After the partitioning, each process uses the macroscopic cross-sections corresponding to its subdomain.
The cells having a part of their stencil straddling two domains, are referred to as ghost or halo cells and are
also collected. The rest of the solver proceeds by substituting the global data (mesh and cross-sections) by
the local data. These global data can then be freed to save memory space. Finally, each process computes
its sub-matrices A0

r , A1
r , A2

r , A+
r , A−

F (11) - (15) on the local mesh and a communication matrix A− is
generated from the ghost mesh. All matrices are built in an assembly-free fashion.

4.2. Asynchronous Sparse Matrix Vector Multiplication

When solving the linear system (8) inside the power iteration algorithm, all process work concurrently. The
neighboring domains are coupled via the ghost cells, and exchange upwind flux on their common interfaces.
At the algebraic level, this exchange is done at each sparse matrix-vector product (SpMV). The use of
non-blocking communications allows communication time to be covered by computing time.

The asynchronous matrix-vector product attached to the Krylov solver takes place in three main stages and
is described on Algorithm 1. We start by posting an MPI Irecv request to start receiving the incoming
flux x↑ from neighboring domains. Then for each neighboring domain, the outgoing portion of the flux is

5

Kenneth Assogba and Lahbib Bourhrara

Figure 2: Simple (left) and geometric (right) partitioning of 4 17-by-17 assemblies into 8 domains.

copied into a buffer xout and a MPI Isend request is posted. The calculation starts and the part of the
product involving only local degrees of freedom is calculated. Then, one waits for the incoming and outgoing
communications to finish. The overlap works very well and the waiting time is usually negligible. Finally,
one use the received flux to compute the off-diagonal part of the product.

The copy step is needed because the ghost cells data are not necessary contiguous inside the flux vector.
This operation is accelerated using OpenMP and the overhead is negligible. Two other possibilities are (i)
to send the data element by elements or (ii) to define a MPI datatype that will handle the stride inside the
flux vector. These two options have been tested and are slower than the one chosen. Waiting for outgoing
communications to stop is necessary to deallocate requests handler and avoid memory leaks.

Algorithm 1: The general Matrix-Vector product from the point of view of a subdomain.
Input: Aloc, xloc, yloc

1 foreach id ∈ domainneighbors do
2 reqsin ← MPI Irecv(x↑) // async

3 Copy outgoing part of xloc in the xout buffer
4 reqsout ← MPI Isend(xout) // async

5 y ← y +A|diagx // A|diag = A0 +A1 +A+ +A−
loc

6 MPI Waitall(reqsin, reqsout)
7 y ← y +A|offdx

↑ // A|offd = A−
comm

To close this part, it is useful to note that, scalar products involve a collective reduction operation between all
domains.

5. EXPERIMENTS

The numerical method described in Section 3 have been applied to a wide variety of reactor cores and lattice
calculation [10–12]. The C5G7 benchmark [17] is used here to assess the performance of the implementation
of the approach described in Section 4.

6

PN Neutron Transport Problem Achieves Linear Scalability Through Domain Decomposition

C5G7 is a reduced Pressurized Water Reactor designed to evaluate the ability of transport solvers to perform
core calculations without spatial homogenization. Presented on the Figure 3, the quarter-core is made up of 4
assemblies surrounded by a reflector. Each assembly is made of a grid of 17 by 17 pins. There are 4 axial
slices, including 3 fuel slices and in the case presented here, Rodded B, the control rods are inserted 2/3 in the
UOx and 1/3 in the MOx. The results of shared memory calculations are presented in [12], here we focus on
the distributed solver.

For all the experiments carried out, the discretization chosen is of order P6 in angle and linear P1 in space.
The Krylov solver used is BiCGSTAB [18] with a tolerance (if not specified) of 10−4 and the point Jacobi
preconditioner. The tolerance on the fission source and on the keff during outer iterations is 10−5. The flux is
calculated and stored in single precision, and the keff in double precision.

Three experiments are conducted: robustness, strong scalability and weak scalability. All calculations are
performed on the Milan partition of the CEA’s petaflopic cluster Topaze. Milan has 864 nodes, each housing
two AMD EPYC 7763 2.45 GHz sockets, equipped with 64 cores each. The nodes are linked together by a
high-performance InfiniBand HDR-100 network. The shared-memory only calculation are performed on one
socket. For hybrid MPI + OpenMP jobs, each MPI process is binded to one socket.

The software tool chain consists of Intel C++ Compiler and Intel MPI in their versions 2019.5.281. All
developments are available in APOLLO3®.

Moderator

x

y

UO2

UO2MOx

MOx
Moderator

x

z

UO2

UO2

UO2

MOx

MOx

MOx

Figure 3: Radial (left) and axial (right) sections of the C5G7 core.

5.1. Robustness

The robustness analysis is done in two steps. First, we check that the NYMO calculation without decomposition
is consistent with the Monte Carlo reference solution provided in [17]. These results are provided in the
table 2. Here, each of the 3 fuel axial slices is divided into 8, the top layer (moderator) is divided into 16,
bringing the number of cells to 832,320. All the tolerances (on outer iterations, keff, thermals, and matrix
solver) are fixed at 10−5. The average (avg), root mean square (rms) and mean relative (mre) pin power
errors are defined in [12, §IV]. The maximum error on the power is 1.7%, it is consistent with what is
expected when comparing a deterministic code to a Monte Carlo code.

In a second stage, we evaluate the variation on the keff, the pin power and the number of outer iterations
when increasing the number of subdomains. The objective is to verify that the error on the eigenvalue and
on the flux in parallel is negligible compared to the sequential solution. The simple partitioning is used.
For the eigenvalue, the calculated error is the relative error with respect to the solution without domain
decomposition δ = (λnd

−λn0
)/λn0

in pcm (10−5) .

The table 3 shows the results of the robustness experiment. We observe that there is no variation on the keff
and on the number of iterations. The maximum bias on the fission rate is 4 pcm. Since the flux is computed

7

Kenneth Assogba and Lahbib Bourhrara

and stored in simple precision, these spreads are negligible. However, they can be justified by the fact that in
parallel, the same operations are performed as in sequential, but in a different order. As machine arithmetic
is not associative, these small variations are observed. The method is robust, in the sense that the variations
on the solution obtained when the number of subdomains is increased are of the order of machine precision.
This offers strong guarantees on the behavior of the parallel solver, which is essential for an industrial use.

Table 2: Eigenvalue and pin power distribution error for Rodded B case of C5G7 problem.

keff error (pcm) avg (%) rms (%) mre (%) max (%) #outer

MCNP 1.07777 - - - - - -
NYMO 1.07864 80 0.351 0.447 0.340 1.752 31

Table 3: Robustness experiment. The eigenvalue and fission rates obtained with domain
decomposition are compared with a reference calculation without decomposition.

nd keff error (pcm) avg (%) rms (%) mre (%) max (%) #outer

0 * 1.07864 - - - - - 31
2 1.07864 0 0.0006 0.0008 0.0005 0.0038 31
4 1.07864 0 0.0008 0.0009 0.0007 0.0025 31
8 1.07864 0 0.0010 0.0013 0.0009 0.0040 31

5.2. Strong scalability

The objective of strong scalability is to evaluate the potential reduction in time when more computing
resources are available. Thus, the number of computing units is increased while the problem size remains
constant. We measure speedup s(d) = t(0)/t(d) and efficiency e(d) = s(d)/nd, t(d) being the elapsed time for
nd subdomains. We use this test to compare the simple and geometric partitioning. Each axial slice is divided
into 4, bringing the number of cells in the mesh to 665,856 and the total number of degrees of freedom to
913,554,432.

Table 4 shows the results of this experiment. We go up to 128 domains, which corresponds to 8192 cores.
We first notice that whatever the chosen partitioning, the measured time decreases linearly. In addition, there
is no real difference in performance between simple and geometric partitioning here. The efficiency is almost
perfect up to 64 domains, then decreases a little at 128 domains. At 128 domains, each domain own 5 216
mesh cells, it can be reasonably assumed that the workload is low in this case. In addition, communication
time represents around 50% of the total time elapsed. The bulk of the communication time is dominated by
global reduction operations.

5.3. Weak scalability

Here, the number of subdomains is increased from 16 to 32 then 64, while keeping the problem size per
process constant. To do this, the mesh is refined axially. Starting from the unrefined mesh, each plane is
divided into 2 then into 4. The performance metric used is the weak scaling efficiency, which is defined as
the ratio of the execution time on 16 process to the execution time on nd process. The goal is to achieve an
efficiency close to one, which indicates that the algorithm scales effectively as more process are added.

Table 5 presents the results of this experiment. The efficiency obtained being close to 100%, these results are
excellent. Added to those of the strong scalability, they demonstrate that our parallel implementation is very
efficient and versatile.

*0 means shared-memory calculation without domain decomposition.

8

PN Neutron Transport Problem Achieves Linear Scalability Through Domain Decomposition

Table 4: Strong scaling experiment on up to 128 domains using a total of 8192 CPU-cores.

Simple partitioning Geometric partitioning

nd #core time (s) speedup efficiency (%) time (s) speedup efficiency (%)

0 * 64 10597 - - 10597 - -
4 256 2557 4.1 104 2658 4 100
8 512 1242 8.5 107 1245 8.5 106

16 1024 667 15.9 99 628 16.9 106
32 2048 302 35.1 110 305 34.7 109
64 4096 146 72.6 113 147 72.1 113

128 8192 101 104.9 82 108 98.1 77

Table 5: Weak scaling experiment.

Simple partitioning Geometric partitioning

nd #core #dof time (s) efficiency (%) time (s) efficiency (%)

16 1024 228,388,608 145 - 142 -
32 2048 456,777,216 154 94 157 90
64 4096 913,554,432 146 99 147 96

6. CONCLUSIONS

In this paper, we have described a domain decomposition method suitable for solving the transport equation
in distributed memory. We also present a mesh partitioning strategy based on Hilbert space-filling curves.
The method is well adapted for DG based transport discretizations and is minimally intrusive in terms of
implementation.

Numerical experiments show that the method is very robust, as we observe little variation in the solutions
obtained when increasing the number of computational processes. Moreover, it enjoys an excellent weak and
strong scalability. These advances are also valuable from the point of view of the end-users, as the use of this
tool requires no additional effort compared to the sequential version.

Future work involves the evaluation of this approach on larger test cases, in particular the direct calculation
of heterogeneous whole core. In addition, it would be valuable to integrate distributed and scalable precondi-
tioners and acceleration strategies.

ACKNOWLEDGEMENTS

K. Assogba’s PhD research work is supported by the CEA NUMERICS program, which has received funding
from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-
Curie grant agreement No 800945.

The authors wishes to thank Grégoire Allaire, Anne-Marie Baudron, Ansar Calloo and Igor Zmijarevic for
fruitful discussions.

REFERENCES

[1] K. Koch, R. Baker, and R. Alcouffe. “Solution of the First-Order Form of the Three-Dimensional
Discrete Ordinates Equation on a Massively Parallel Machine.” Trans Am Nucl Soc, volume 65(198)
(1992).

[2] T. M. Evans, A. S. Stafford, R. N. Slaybaugh, and K. T. Clarno. “Denovo: A New Three-Dimensional
Parallel Discrete Ordinates Code in SCALE.” Nuclear Technology, volume 171(2), pp. 171–200 (2010).

9

Kenneth Assogba and Lahbib Bourhrara

[3] J. I. C. Vermaak, J. C. Ragusa, M. L. Adams, and J. E. Morel. “Massively Parallel Transport Sweeps on
Meshes with Cyclic Dependencies.” Journal of Computational Physics, volume 425, p. 109892 (2021).

[4] E. Jamelot and P. Ciarlet. “Fast Non-Overlapping Schwarz Domain Decomposition Methods for Solving
the Neutron Diffusion Equation.” Journal of Computational Physics, volume 241, pp. 445–463 (2013).

[5] N. Odry, J.-F. Vidal, G. Rimpault, J.-J. Lautard, and A.-M. Baudron. “Performance Study of a Parallel
Domain Decomposition Method.” In PHYSOR 2016 - International Conference on the Physics of
Reactors: Unifying Theory and Experiments in the 21st Century (2016).

[6] N. Odry, J.-J. Lautard, J.-F. Vidal, and G. Rimpault. “Coarse Mesh Rebalance Acceleration Applied to
an Iterative Domain Decomposition Method on Unstructured Mesh.” Nuclear Science and Engineering,
volume 187(3), pp. 240–253 (2017).

[7] C. R. E. de Oliveira, C. C. Pain, and A. J. H. Goddard. “Parallel Domain Decomposition Methods for
Large-Scale Finite Element Transport Modelling.” In Int. Conf. Math. Comp. Reactor Physics and
Environmental Analysis of Nuclear System. American Nuclear Society, Portland, Oregon (1995).

[8] S. Van Criekingen, F. Nataf, and P. Havé. “Parafish: A Parallel FE–PN Neutron Transport Solver Based
on Domain Decomposition.” Annals of Nuclear Energy, volume 38(1), pp. 145–150 (2011).

[9] D. Hilbert. “Über die stetige Abbildung einer Linie auf ein Flächenstück.” In D. Hilbert, editor, Dritter
Band: Analysis - Grundlagen der Mathematik - Physik Verschiedenes: Nebst Einer Lebensgeschichte,
pp. 1–2. Springer, Berlin, Heidelberg (1935).

[10] L. Bourhrara. “A New Numerical Method for Solving the Boltzmann Transport Equation Using the
PN Method and the Discontinuous Finite Elements on Unstructured and Curved Meshes.” Journal of
Computational Physics, volume 397 (2019).

[11] K. Assogba, L. Bourhrara, I. Zmijarevic, and G. Allaire. “Precise 3D Reactor Core Calculation
Using Spherical Harmonics and Discontinuous Galerkin Finite Element Methods.” In Proceedings of
International Conference on Physics of Reactors 2022 (PHYSOR 2022), pp. 1224–1233. American
Nuclear Society, Pittsburgh, PA, United States (2022).

[12] K. Assogba, L. Bourhrara, I. Zmijarevic, G. Allaire, and A. Galia. “Spherical Harmonics and Dis-
continuous Galerkin Finite Element Methods for the Three-Dimensional Neutron Transport Equation:
Application to Core and Lattice Calculation.” Nuclear Science and Engineering (2023).

[13] P. Mosca, L. Bourhrara, A. Calloo, A. Gammicchia, F. Goubioud, L. Mao, F. Madiot, F. Malouch,
E. Masiello, F. Moreau, S. Santandrea, D. Sciannandrone, I. Zmijarevic, E. Y. Garcias-Cervantes,
G. Valocchi, J. Vidal, F. Damian, P. Laurent, A. Willien, A. Brighenti, L. Graziano, and B. Vezzoni.
“APOLLO3®: Overview of the New Code Capabilities for Reactor Physics Analysis.” In Proceedings
of This Conference (2023).

[14] L. Bourhrara. “New Variational Formulations for the Neutron Transport Equation.” Transport Theory
and Statistical Physics, volume 33(2), pp. 93–124 (2004).

[15] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning Irregular
Graphs.” SIAM Journal of Scientific Computing, volume 20(1), pp. 359–392 (1998).

[16] C. Chevalier and F. Pellegrini. “PT-Scotch: A Tool for Efficient Parallel Graph Ordering.” Parallel
Computing, volume 34(6), pp. 318–331 (2008).

[17] E. E. Lewis, G. Palmiotti, T. A. Taiwo, R. N. Blomquist, M. A. Smith, and N. Tsoulfanidis. “Bench-
mark Specifications for Deterministic MOX Fuel Assembly Transport Calculations without Spatial
Homogenization (3-D Extension C5G7 MOX).” OECD’s Nuclear Energy Agency, volume 6 (2003).

[18] H. A. van der Vorst. “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems.” SIAM Journal on Scientific and Statistical Computing,
volume 13(2), pp. 631–644 (1992).

10

